Mitteilung aus dem Institut für anorganische Chemie der Masaryk-Universität in Brünn

Aminobenzolsulfonate der zweiwertigen Elemente

Von V. Čupr und J. Širůček

(Eingegangen am 29. Oktober 1934)

In dieser Mitteilung ergänzen wir unsere in diesem Journal¹) früher beschriebene Darstellung der Be-, Mg-, Zn-, Cd-, Ca-, Sr- und Ba-Salze der aromatischen Sulfosäuren mit den Salzen der o-, m- und p-Aminobenzolsulfosäure. Gleichzeitig behandeln wir die Cu-Salze, bei denen wir die Hydrolyse gemessen haben, und die bisher unbekannten Mn-, Ni- und Co-Salze.

Die Arbeitsbedingungen sind dieselben wie in der zitierten Abhandlung. Die zugehörigen Be-Salze konnten wegen der weitgehenden, nicht zu verhindernden Spaltung nicht dargestellt werden, obwohl viele Versuche in dieser Richtung angestellt wurden.

Die Lösungen der o-Aminobenzolsulfonate, auch diejenigen mit farblosen Kationen, haben die Neigung, sich braun zu färben, während die Lösungen der m-Derivate zur Rotfärbung neigen. Mit Hilfe der Tierkohlefiltration kann man diese Lösungen größtenteils entfärben. Trotzdem aber zeigen die angeführten festen Salze einen Stich ins Braune oder ins Rote.

I. Salze der o-Aminobenzolsulfosäure

Alle diese Salze sind an der Luft beständig und krystallisieren bei der Zimmertemperatur am meisten in schönen, gut entwickelten Krystallen.

¹) V. Čupr u. J. Širůček, dies. Journ. [2] 139, 245 (1934); Publications de la faculté des sciences de l'Université Masaryk, No. 186 (1933).

 $(\mathbf{NH_2.C_6H_4.S0_3})_2\mathbf{Mg.6H_20}$. Glänzende, sehr schwach rötliche Kryställchen.

0,6241, 0,7860 g Subst.: 0,1564, 0,1978 g MgSO₄.

Ber. Mg 5,10 Gef. Mg 5,06, 5,08

 $(\mathbf{NH_2}, \mathbf{C_6H_4}, \mathbf{SO_3})_2\mathbf{Zn}$. 4 $\mathbf{H_2O}$. Durchsichtige, orangegelbe, glänzende Krystalle.

0,8033, 0,6571 g Subst.: 0,2689, 0,2201 g ZnSO₄.

Ber. Zn 13,57

Gef. Zn 13,55, 13,56

 $(\mathbf{NH}_2 \cdot \mathbf{C}_6\mathbf{H}_4 \cdot \mathbf{SO}_3)_2\mathbf{Cd} \cdot \mathbf{4H}_2\mathbf{0}$. Glänzende, orangegelbe Krystalle.

1,4998, 1,0169 g Subst.: 0,3180, 0,2162 g Cd.

Ber. Cd 21,26

Gef. Cd 21,21, 21,26

 $(\mathbf{NH_2 \cdot C_6H_4 \cdot SO_3})_2\mathbf{Ca}$. Bräunlich gefärbte, durchsichtige Tafeln.

1,1108, 0,8770 g Subst.: 0,3898, 0,3092 g CaSO₄.

Ber. Ca 10,43

Gef. Ca 10,33, 10,38

 $(\mathbf{NH_2} \cdot \mathbf{C_6H_4} \cdot \mathbf{SO_3})_2 \mathbf{Sr} \cdot \mathbf{H_2O}$. Glänzende, bräunliche Blättchen oder Täfelchen.

0,8345, 1,2265 g Subst.: 0,3397, 0,4999 g SrSO₄.

Ber. Sr 19.48

Gef. Sr 19.42 19.44

(NH₂.C₆H₄.SO₃)₂Ba ¹). Bräunliche Krystalle. A. Thomas ²) beschreibt ein Dihydrat. Unser Salz war wasserfrei.

0,7995 g Subst.: 0,3881 g BaSO₄.

Ber. Ba 28,52

Gef. Ba 28,57

 $(\mathbf{NH}_2.\mathbf{C}_6\mathbf{H}_4.\mathbf{S0}_3)_2\mathbf{Cu}^3$). Kleine, grünliche, im Wasser schwer lösliche Schuppen.

0,9194, 0,6072 g Subst.: 0,1430, 0,0944 g Cu.

Ber. Cu 15,59

Gef. Cu 15,55, 15,55

(NH₂.C₆H₄.SO₃)₂Mn. Schwach rosa Blättchen.

0,6678, 0,6734 g Subst.: 0,2522, 0,2545 g MnSO₄.

Ber. Mn 13,76

Gef. Mn 13,74, 13,75

¹⁾ A. Berndsen u. H. Limpricht, Ann. Chem. 177, 99 (1875); H. Kreis, Ann. Chem. 286, 386 (1895).

²) A. Thomas, Ann. Chem. 186, 129 (1877).

³⁾ W. Bretschneider, dies. Journ. [2] 55, 289 (1897).

(NH₂.C₅H₄.SO₃), Ni.4H₂O. Grünes, sandiges Krystallpulver.

0,2301 g Subst.: 0,1388 g NiC₈H₁₄N₄O₄. — 1,2207 g Subst.: 0,1495 g Ni.

Ber. Ni 12,32

Gef. Ni 12,26, 12,25

(NH₂.C₆H₄.SO₂)₂Co.4H₂O. Glänzende, dunkelrote, schöne Krystalle.

0,6356, 0,7281 g Subst.: 0,2071, 0,2370 g CoSO₄.

Ber. Co 12,41

Gef. Co 12,40, 12,38

II. Salze der m-Aminobenzolsulfosäure

Gut krystallisierende, an der Luft beständige Salze mit Ausnahme des Ca-Salzes, das schnell, und des Sr-Salzes, das nur sehr langsam an der Luft verwittert.

(NH₂.C₈H₄.SO₃)₂Mg.6H₂O. Gelbliche, glänzende Kryställchen.

0,8365, 0,9536 g Subst.: 0,2111, 0,2412 g MgSO₄.

Ber. Mg 5,10

Gef. Mg 5,10, 5,11

(NH₂.C₆H₄.SO₃)₂Zn.4H₂O. Braune, große, durchsichtige Krystalle.

0,6994, 0,9363 g Subst.: 0,2324, 0,3134 g ZnSO₄.

Ber. Zn 13,57

Gef. Zn 13,56, 13,55

(NH₂.C₆H₄.SO₃)₂Cd. Grobkörnige, violettrote Kryställchen.

1,1971, 0,8864 g Subst.: 0,2940, 0,2172 g Cd.

Ber. Cd 24,61

Gef. Cd 24,56, 24,50

(NH₂.C₆H₄.SO₃)₃Ca.6H₂O. Schwach rötlich gefärbte, durchsichtige Tafeln.

0,9231, 0,6176 g Subst.: 0,2524, 0,1706 g CaSO₄.

Ber. Ca 8,14

Gef. Ca 8,12, 8,13

Im Laufe von 3 Tagen verliert das Salz vollkommen sein Krystallwasser:

0,4109 g Subst.: 0,1446 g CaSO4.

Ber. (für wasserfreies Salz) Ca 10,43 Gef. Ca 10,36

(NH₂.C₆H₄.SO₃)₂Sr.6H₂O. Große, durchsichtige, gelbliche, säulenförmige Krystalle.

0,7284, 1,1451 g Subst.: 0,2474, 0,3884 g SrSO₄.

Ber. Sr 16,23

Gef. Sr 16,20, 16,18

(NH₂.C₆H₄.SO₃)₂Ba.5H₂O. Gelb oder rot gefärbte, säulenförmige, große Krystalle. A. Berndsen¹) beschreibt dieses Salz als Hexahydrat; unsere Analysen stimmen mit den Angaben von H. Kreis²) überein und zeugen für das beständige Pentahydrat.

1,8048, 0,7246 g Subst.: 0,7365, 0,2959 g BaSO₄.

Ber. Ba 24.03

Gef. Ba 24,01, 24,01

Das Cu-Salz konnte trotz vieler Versuche nicht bereitet werden; es bildete sich immer nur eine schmierige Masse.

 $(\mathbf{NH}_2.\mathbf{C}_6\mathbf{H}_4.\mathbf{SO}_3)_2\mathbf{Mn}.6\mathbf{H}_2\mathbf{0}$. Schöne, gelbgrüne, große Krystalle.

0,8095, 0,5931 g Subst.: 0,2403, 0,1763 g MnSO₄.

Ber. Mn 10.83

Gef. Mn 10,80, 10,82

 $(\mathbf{NH}_2.\mathbf{C}_6\mathbf{H}_4.\mathbf{SO}_3)_2\mathbf{Ni.4H}_2\mathbf{0}$. Sandige, grüne Kryställchen.

0,4845, 0,5602 g Subst.: 0,2916, 0,3382 g NiC₈H₁₄N₄O₄.

Ber. Ni 12,32

Gef. Ni 12,23, 12,26

 $(NH_2.C_6H_4.SO_3)_2Co.6H_2O.$ Große, braunrote, glänzende Krystalle.

0,6932, 0,7789 g Subst.: 0,2163, 0,2429 g CoSO₄.

Ber. Co 11,93

Gef. Co 11,87, 11,86

III. Salze der p-Aminobenzolsulfosäure

Die Be-, Mg-, Zn-, Cd-, Ca-, Sr- und Ba-Salze sind in unserer früheren Abhandlung³) beschrieben.

 $(\mathbf{NH}_2.\mathbf{C}_{\theta}\mathbf{H}_4.\mathbf{SO}_3)_2\mathbf{Cu.4H}_2\mathbf{0}$. Schwarzgrüne, glänzende Krystalle.⁴)

0,7827 g Subst.: 0,1037 g Cu.

Ber. Cu 13,25

Gef. Cu 13,25

 $(\mathbf{NH_2.C_6H_4.SO_3})_2\mathbf{Mn.2H_2O}. \quad \text{Gelbe, glänzende N\"{a}delchen}.$

0,5926, 0,6111 g Subst.: 0,2048, 0,2107 g MnSO₄.

Ber. Mn 12,62

Gef. Mn 12,58, 12,54

 $(NH_2.C_6H_4.SO_3)_2Ni.4H_2O^5).$

¹⁾ A. Berndsen, Ann. Chem. 177, 83 (1875).

²) H. Kreis, Ann. Chem. 286, 379 (1895).

³⁾ Vgl. Anm. 1, S. 6.

⁴⁾ Gerhardt, Ann. Chem. 60, 314 (1846); C. Laar, dies. Journ. [2] 20, 248 (1879).

⁵) F. Ephraim, Ber. 51, 658 (1918).

(NH₂.C₆H₄.SO₃)₂Co.6H₂O. Rote Krystalle.

0,7023, 0,5760 g Subst.: 0,2189, 0,1793 g $CoSO_4$.

Ber. Co 11,93

Gef. Co 11,86, 11,84

Unsere Resultate zeigen, daß die Zuordnung¹) des Be und Mg zur Untergruppe Zn und Cd auf Grund der Koordinationszahl der Hydrate nicht erweislich ist.

Es ist auffällig, daß das Kobaltosalz der o-Aminobenzolsulfosäure 4 Mol. Krystallwasser hat, während die meisten Kobaltosalze der Benzolsulfosäure 6, und nur das der p-Oxybenzolsulfosäure 8 Mol. Wasser besitzen. Beachtlich ist auch, daß die Cu- und Mn-Salze der o-Aminobenzolsulfosäure und das Cd-Salz der m-Aminobenzolsulfosäure wasserfrei krystallisieren.

Herrn Prof. Dr. B. Kužma sprechen wir für seine wertvollen Ratschläge unseren ergebensten Dank aus.

¹⁾ Vgl. Anm. 1, S. 6.